

Towards Performance Prediction of Compositional Models in Industrial GALS Designs

Nicolas Coste

Inria Grenoble – Rhône-Alpes STMicroelectronics Grenoble

Etienne Lantreibecq

STMicroelectronics Grenoble

Holger Hermanns

Universität des Saarlandes Inria Grenoble – Rhône-Alpes

Wendelin Serwe

Inria Grenoble – Rhône-Alpes

Talk outline

- Introduction
- Modelling Flow
- Performance Flow
- Case-Study: the xSTream Architecture
- Conclusion

Introduction

- Systems-on-Chip (SoCs) are targeted:
 - Complexity increasing in time (parallelism)
 - Validity required: functional and performance correctness

 Performance measures are required before prototypes and precise description of the architecture are available

 Currently used methods for performance evaluation are rough (based on simulations).

Introduction

 Multiprocessor dataflow architecture designed at STMicroelectronics

- Target: high performance embedded multimedia streaming applications
- Expected Performance measures:

- Throughput
- Resource utilization

Nicolas Coste INRIA Rhône-Alpes and STMicroelectronics Grenoble

Talk outline

Introduction

- Modelling Flow
- Performance Flow
- Case-Study: the xSTream Architecture

Conclusion

5

- LOTOS models available for functional verification
 - Reuse those functional models

"1 single model for functional verification and performance evaluation"

- Keep the compositional approach (and use of nondeterminism for abstraction)
- From a functional to a timed model:
 - Enrichment of LTS models by time information
 - State space explosion prevention (classical problem using parallel composition)
 - Preservation of performance properties w.r.t. compositions

Time model: Markov Chain (MC) Probabilistic steps are time steps!

Cumulative Distribution

Markov chain model

- Time model: Markov Chain (MC) Probabilistic steps are time steps!
 - **Model:** Interactive Probabilistic Chain (IPC) An IPC $D = \langle S, A, \rightarrow, \Rightarrow, \hat{s} \rangle$ is a quintuple where:
 - S is a set of states
 - ${\cal A}\,$ is a set of actions (including $au\,$)
 - $\longrightarrow \subset S \times \mathcal{A} \times S$ is a set of interactive transitions
 - $\Longrightarrow \subset S \times [0,1] \times S \to \mathbb{N}$ is a multi-set of probabilistic transitions
 - $\hat{s} \in S$ is the initial state

- Time model: Markov Chain (MC)
 Probabilistic steps are time steps!
 - Model: Interactive Probabilistic Chain (IPC)

Semantic Rules

9

10

- Time model: Markov Chain (MC) Probabilistic steps are time steps!
- Model: Interactive Probabilistic Chain (IPC)
- Semantic Rules
- Compositional approach
 - Fight against state space explosion
 - Definition of a branching probabilistic bisimulation (b.p.b.)
 - The b.p.b. is a congruence w.r.t. the parallel operator

- Time model: Markov Chain (MC) Probabilistic steps are time steps!
- Model: Interactive Probabilistic Chain (IPC)
- Semantic Rules
- Compositional approach
 - Fight against state space explosion
 - Definition of a branching probabilistic bisimulation (b.p.b.)
 - The b.p.b. is a congruence w.r.t. the parallel operator
 - Iteratively: minimize w.r.t. the b.p.b. and compose

Nicolas Coste

- Time model: Markov Chain (MC) Probabilistic steps are time steps!
- Model: Interactive Probabilistic Chain (IPC)
- Semantic Rules
- Compositional approach
- Management of non-determinism

Talk outline

- Introduction
- Modelling Flow
- Performance Flow
- Case-Study: the xSTream Architecture
- Conclusion

Targeted result: latency distribution

latency: in a dIPC = time between two interactive transitions

15

- Targeted result: latency distribution latency: in a dIPC = time between two interactive transitions
- Study of the associated MC

latency: in the MC = time between two sets of states α and ω

- Targeted result: latency distributionlatency: in a dIPC =time between twointeractive transitions
- Study of the associated MC latency: in the MC = time between two sets of states α and ω

Property:

2 branching equivalent dIPCs 2 strongly equivalent MCs

- Markovian properties preserved along minimizations
- Extracted performance results preserved

- Targeted result: latency distributionlatency: in a dIPC =time between twointeractive transitions
- Study of the associated MC

latency: in the MC = time between two sets of states α and ω

latency \rightarrow random variable at t₀: $L_{t_0}(\alpha, \omega)$

$$L_{t_0}(\alpha, \omega) = \min\{t \mid t > 0 \land X_{t_0+t} \in \omega\}$$

if $X_{t_0} \in \alpha$ and 0 otherwise.

Long-run average latency (Cesàro limit):

$$L(\alpha, \omega) = \lim_{t \to \infty} \frac{1}{t} \sum_{t_0=0}^{t} L_{t_0}(\alpha, \omega)$$

Nicolas Coste INRIA Rhône-Alpes and STMicroelectronics Grenoble

- Targeted result: latency distribution latency: in a dIPC = time between two interactive transitions
- Study of the associated MC

latency: in the MC = time between two sets of states α and ω

Long-run average latency: $L(\alpha, \omega)$

Chance of being in c_h on long run

Distribution of the latency starting in a particular state of α

Nicolas Coste **INRIA Rhône-Alpes and STMicroelectronics Grenoble** 19

Nicolas Coste INRIA Rhône-Alpes and STMicroelectronics Grenoble 20

Talk outline

- Introduction
- Modelling Flow
- Performance Flow
- Case-Study: the xSTream Architecture
- Conclusion

The xSTream Case-Study

xSTream

- Two flows from PE 1 to another PE, say PE 4.
- Time to remove an element from a Pop queue ?
 - Available elements
 - \rightarrow Pop immediate
 - No element
 - → Pop delayed until next element arrives
- A Pop latency close to its minimal value means the communication architecture absorbs production/consumption bursts

The xSTream Case-Study : functional model

- 2 applications (producer/consumer pairs) sharing the NoC and flow controllers
- Producer inserts elements in a Push queue
- Consumer gets elements from a Pop queue
- A multiplexer is used to access the NoC. Indeed, the 2 used Push queues are in the same flow controller
- A demultiplexer is used to get data from NoC and send them to the right Pop queue
- The NoC is abstracted by a buffer : the 2 dataflows are sharing the same virtual channel on the NoC
- Functional verification showed that the credit protocol is mandatory (possible deadlocks)

The xSTream Case-Study : timed model

- Insertion of 14 delays
- Backlog mechanism abstracted by probabilistic delays
- Study of 3 different configurations of the credit protocol: exp. (a), (a') and (b)
 - credit protocol used in its worst configuration prod./cons. rates greater in exp. (a') than in exp. (a)
 - better configuration of credit protocol for exp. (b) than for experiments (a) and (a')

The xSTream Case-Study : timed model

	Exp.	(a)	(a')	(b)
IPC size	States	9.2M	20.3M	19.7M
	trans.	39.7M	82.8M	92.0M
Associated MC size	states	207k	380k	235k
	trans.	822k	1487k	1186k

- Study of 3 different configurations of the credit protocol: exp. (a), (a') and (b)
 - credit protocol used in its worst configuration prod./cons. rates greater in exp. (a') than in exp. (a)
 - better configuration of credit protocol for exp. (b) than for experiments (a) and (a')

Talk outline

- Introduction
- Modelling Flow
- Performance Flow
- Case-Study: the xSTream Architecture
- Conclusion

Conclusion

- Methodology for functional verification and performance evaluation on the same model (IPC)
- Definition of latency and how to compute its distribution for an IPC
 - Translation of deterministic IPC in Markov Chain
 - Computation of latency distribution in a Markov chain
 - We did not give solutions for non-deterministic systems
- Results computed are distributions
 - Minimum, maximum and average values are thus easily available
 - Possibility to have probabilistic results (ex: Pr [latency < k])

Thank you for your attention !

Questions?